Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

نویسندگان

  • E Marie Muehe
  • Pascal Weigold
  • Irini J Adaktylou
  • Britta Planer-Friedrich
  • Ute Kraemer
  • Andreas Kappler
  • Sebastian Behrens
چکیده

The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation

The effects of plant-microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrati...

متن کامل

Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.

Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thla...

متن کامل

Short transcript-derived fragments from the metal hyperaccumulator model species Arabidopsis halleri.

Phytoremediation of metal contaminated soils requires high-biomass plants exhibiting tolerance to and accumulation of metal contaminants. However, very little is known about the genes controlling these traits. In order to better understand this, Arabidopsis halleri ssp. halleri (L.) O'Kane and Al-Shehbaz, a naturally selected zinc and cadmium tolerant plant species capable of hyperaccumulating ...

متن کامل

Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives

In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary pr...

متن کامل

A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase.

Cadmium (Cd) tolerance seems to be a constitutive species-level trait in Arabidopsis halleri sp. halleri. Therefore, an interspecific cross was made between A. halleri and its closest nontolerant interfertile relative, Arabidopsis lyrata sp. petraea, and a first-generation backcross population (BC1) was used to map quantitative trait loci (QTL) for Cd tolerance. Three QTL were identified, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 2015